• home
Home » , , » Soal Barisan Aritmatika - SMP/MTs

Soal Barisan Aritmatika - SMP/MTs

cara cepat mencari nilai fungsi. Cara cepat ini bisa juga diterapkan untuk mencari suku ke-n dari barisan aritmatika. Penasaran? Silahkan simak penjelasan berikut ini.

Seperti yang sudah dijelaskan sebelumnya bahwa fungsi linear biasanya dinyatakan dengan rumus f(x) = mx + n. Dari rumus tersebut kita ketahui bahwa gradien dari rumus fungsi tersebut adalah m. Sekarang kita lihat pada barisan aritmatika, dimana suku ke-n dari barisan aritmatika dapat dicari dengan rumus Un = a + (n – 1)b. Dapatkah Anda tentukan yang mana gradiennya? Gradien dari rumus Un = a + (n – 1)b adalah b. Jadi barisan aritmatika dapat dikatakan sebagai fungsi linear.
Misalkan diketahui Un1 = x dan Un2= y, maka cari beda (b) terlebih dahulu dengan rumus gradien yakni:
b = (y – x)/(n2 – n1)
Sedangkan rumus suku ke-n3 yakni:
Un3 = b[n3 – n1] + Un1
atau
Un3 = b[n3 – n2] + Un2
Sekarang kita terapkan rumus tersebut untuk menyelesaikan soal, silahkan simak contoh soal di bawah ini.
 
Contoh Soal 1
Suku ke-5 dan dan ke-8 dari barisan aritmatika berturut-turut adalah 11 dan 17. Tentukan suku ke-24 dari barisan aritmatika tersebut!
 
Penyelesaian:
U5 = 11
U8 = 17
Cara biasa:
Un = a + (n – 1)b
U5 = a + (5 – 1)b = 11
a + 4b = 11 => a = 11 – 4b
U8 = a + (8 – 1)b = 17
a + 7b = 17
Substitusi a = 11 – 4b ke persamaan a + 7b = 17, maka:
a + 7b = 17
11 – 4b + 7b = 17
3b = 6
b = 2
a = 11 – 4b
a = 11 – 4.2
a = 11 – 8
a = 3
Cara Cepat:
b = (y – x)/(n2 – n1)
b = (17 – 11)/(8 – 5)
b = 6/3
b = 2
Un3 = b[n3 – n1] + Un1
U24 = 2[24 – 5] +11
U24 = 2.19 + 11
U24 = 49

Contoh Soal 2
Dari barisan aritmatika diketahui suku ke-3 = 14 dan suku ke-7 = 26. Tentukan suku ke-18.
Penyelesaian:
U3 = 14
U7 = 26
b = (y – x)/(n2 – n1)
b = (26 – 14)/(7 – 3)
b = 12/4
b = 3
U18 = 3[18 – 3] +14
U18 = 3.15 + 14
U18 = 59
 
Contoh Soal 3
Dari barisan aritmatika diketahui suku ke-7 = 22 dan suku ke-11 = 34. Tentukan suku ke-27.
Penyelesaian:
U7 = 22
U11 = 34
b = (y – x)/(n2 – n1)
b = (34 – 22)/(11 – 7)
b = 12/4
b = 3
U27 = 3[27 – 7] + 22
U27 = 3.20 + 22
U27 = 82

Sekarang coba lihat gambar di atas. Dari gambar di atas diketahui U3 = 18 dan U7 = 38. Dapatkah Anda tentukan nilai U9? Jika Anda menguasai cara cepat di atas, hanya dengan melihat saja sudah bisa Anda tentukan berapa nilai dari U9 di atas.
alat peraga Artikel ARTIKEL ISLAMI ARTIKEL MATEMATIKA ARTIKEL PENDIDIKAN Bahan untuk belajar Bahasa Indonesia 7 bank soal barisan aritmatika Beasiswa berita matematika berita pendidikan Bilangan Biologi 7 bse matematika BTA Matematika UN 2014 Buku SMP Kurikulum 2013 cara menghitung cepat Cerita Cita data ppdb tgl 24 Excel Formula Matematika game matematika Hokkaido Mathematical Journal INFO PPDB 2013 INFORMASI PENDIDIKAN IPS 8 It Slices It Dices jadwal ujian nasional Kelas 7 Kelas 8 Kisi-kisi UAS 2012 Kisi-kisi UAS Ganjil 2012 Kisi-kisi UKK 2013 KUIS MATH 9 Kumpulan soal-soal Matematika kelas IX Kunci Jawaban KUNCI JAWABAN DAN SEBARAN TUKPD I 2013 kurikulum 2013 Latihan Latihan soal UN LATIHAN TO UN 2013 Latihan UAS Kelas 8 latihan UAS kelas IX Latihan UAS Matematika 9 LATIHAN UAS MATH IX logaritma matematika Matematika 7 matematika sd matematika smp materi Bangun ruang sisi lengkung materi matematika Materi Matematika kelas IX-SMP materi matematika smp Menghtiung Modul Matematika MODUL PM UN 2013 PAI 7 Pengumuman UN 2013 Peringkat UN SMAN DKI Jakarta 2013 php PPDB Jakarta 2013 PROGRAM UN 2013 M2C PSB SMA Negeri Unggulan DKI Jakarta rangkuman RPP matematika Rumus rumus matematika sd kelas 3 sd kelas 4 sd kelas 5 sd kelas 6 segitiga pascal Seri Latihan Soal UN 2010 silabus matematika SKL UJIAN NASIONAL Skripsi SMA SMA kelas 10 SMA kelas 12 SMP smp kelas 7 smp kelas 8 smp kelas 9 SMPN 252 SOAL soal dan pembahasan SOAL DAN PEMBAHASAN UN soal matematika soal try out SOAL TRY OUT MATEMATIKA SMP 2011 soal ujian akhir semester soal UN SOAL UN 2012 UNTUK SMP SOAL UN MATEMATIKA 2011 SOFTWARE statistika matematika teka teki matematika teknik Teori The Asian Journal of Mathematics The Sea of Mathematics tips belajar matematika TOKOH trigonometri Try Out UN 2011 tutorial Ujian Ujicoba UN 2010 UN 2010 UN 2011 Utak - atik Video
Powered by Blogger.