• home
Home » , » Soal dan Pembahasan tentang Pola Bilangan SMP kelas 9

Soal dan Pembahasan tentang Pola Bilangan SMP kelas 9

SOAL LATIHAN
1.       Selisih dua bilangan asli adalah 36 dan bilangan kedua adalah lima kali bilangan pertama. Jika kedua bilangan itu berturut – turut membentuk  suku kelima dan suku kedua suatu barisan aritmetika maka tentukan suku ke sepuluh!
                Penyelesaian :
                *) y – x = 36  y = 36 + x      →             5x = 36 + x
                *) y= 5x                                                     4x = 36 x = 9  y = 45
                U5 = 9  a + 4b = 9                                         
                U2 = 45  a + b = 45   -                                         
                                        3b = -36
                                        b = – 12                     U10 = a + 9b
                                        a = 57                                = 57 – 108 = – 51

2.       Misalkan a1 + a2 + a+ a+ a+ a6 adalah suatu deret aritmetika yang berjumlah 75. Jika a2 = 8 maka tentukan a6 !
        a1 + a2 + a+ a+ a+ a6 = 75                                                        a2 = 8
        a + (a + b) + (a + 2b) + (a + 3b) + (a + 4b) + (a + 5b) = 75        a + b = 8
        6a + 15b = 75                                                                                   a = 8 – b
        2a + 5b = 25
        2(8 – b) + 5b = 25
        16 + 3b = 25  b = 3  a = 5  a6 = a + 5b = 5 + 15 = 20 

3.       1 – 3 + 5 + 7 – 9 + 11 + 13 – 15 + 17 + 19 – 21 + ….. + 193 – 195 + 197 = ?
  = 1–3+(5+7)–9+(11+13)–15+(17+19)–21+ …..–189+(191+ 193)–195+197
  = 1–3+  12   –9+   24    – 15+    36    – 21+….. – 189 +      384   – 195 + 197
  = 1 + 197 + (12 + 24 + 36 + … + 384) – 3 – 9 – 15 – ……. – 195
  = 198 + 16(12 + 384) – 33/2(3 + 195)
  = 198 + 6336 – 3267 = 3267           

4.       Jika bilangan ganjil dikelompokkan seperti berikut :
        kelompok 1        : {1},
        kelompok 2        : {3,5},
        kelompok 3        : {7,9,11},
        kelompok 4        : {13,15,17,19}, …
        dst
        maka berapakah bilangan pertama dari kelompok ke-100 ?
        kelompok 1        : {1}                        = 12 – 0
        kelompok 2        : {3,5}                    = 22 – 1
        kelompok 3        : {7,9,11}              = 32 – 2  
        kelompok 4        : {13,15,17,19}    = 42 – 3
        .
        .              
        Kelompok 100   :                               = 1002 – 99 = 10.000 – 99 = 9.901   
       
5.   Tiga buah bilangan positif membentuk barisan aritmetika dengan beda 16. Jika bilangan terkecil ditambah 10 dan bilangan terbesar dikurangi 7, maka diperoleh barisan geometri. Tentukan jumlah ketiga bilangan tersebut !
                Misalkan bilangan itu : a – 16, a , a + 16
                (a + 16 – 7 ) : a = a : (a – 16 + 10)
                a2 = (a + 9)(a – 6)
                a2 = a2 + 3a – 54
                3a = 54  a = 18
                Sehingga jumlah 3 bilangan itu = 2 + 18 + 34 = 54 

6.  Jika jumlah sepuluh suku pertama suatu deret aritmetika adalah – 110 dan jumlah dua suku berturut-turut berikutnya adalah 2 maka tentukan jumlah 2 suku pertama !
                S10 = 5(2a + 9b)                         U11 + U12 = 2                    2a + 9b = – 22
                 – 110 = 5(2a + 9b)          a + 10b + a+ 11b =2                      2a + 21b =    2 -
– 22 = 2a + 9b         2a + 21b = 2                   12b = 24                                                                                                                       b =2  a = – 20
                                     sehingga a + a + b = – 40  + 2 = – 38          
               
7.       Jika a, b, c, d dan e membentuk barisan geometri dan a.b.c.d.e = 1.024 maka berapakah nilai c ?
                a.b.c.d.e = 1.024                                              
                a.ar.ar2.ar3.ar4 = 45                                           karena c merupakan suku ke-3 maka
                a5.r10 = 45                                                             c = ar2 = 4
                (ar2)5 = 45
                ar2 = 4

8.  Diketahui barisan bilangan bulat 3, x, y dan 18. Jika tiga bilangan pertama membentuk barisan geometri dan tiga bilangan terakhir membentuk barisan aritmetika. Maka tentukan x + y !
                y : x = x : 3                                                           18 – y = y – x
                x2 = 3y                                                                  2y = 18 + x  y = (18 + x)/2
                x2 = 3(18 + x)/2
                2x2 = 3(18 + x)                                                    sehingga : x + y = 6 + 12 = 18
                2x2 – 3x – 54 =0
                (2x + 9)(x – 6) = 0
                x = 6  y = 12  

9.     Diketahui  p, q dan r merupakan akar – akar persamaan suku banyak berderajat tiga. Jika p, q dan r membentuk barisan aritmetika, dengan suku ketiga tiga kali suku pertama dan jumlah dari ketiga akar  adalah  12 maka tentukan persamaan dari suku banyak tersebut !
                r – q = q – p                        r = 3p                                     p + q + r = 12
                2q = p + r                                                                          p + 2p + 3p = 12
                2q = p + 3p                                                                                      6p = 12
                2q = 4p                                                                                 p = 2 q = 4  r = 6
                q = 2p
                                                sehingga persamaan suku banyaknya : (x – 2)(x – 4)(x – 6) = 0

 10.   Pada suatu barisan geometri dengan r > 1, diketahui dua kali jumlah empat suku pertama adalah tiga kali jumlah dua suku genap pertama. Jika diantara suku – suku tersebut disisipkan empat bilangan, dengan cara : antara suku kedua dan ketiga disisipkan satu bilangan dan antara suku ketiga dan keempat disisipkan tiga buah bilangan maka akan terbentuk barisan aritmetika dengan beda r. Hitung jumlah dari bilangan yang disisipkan !
                2S4 = 3(U2 +U4)                                                                 
                2 a(r4 - 1)/(r - 1) = 3(ar + ar3)
                2a(r4 – 1) = 3ar(1 + r2)(r – 1)
                2(r2 + 1)(r – 1)(r + 1) = 3r(r2 +1)(r – 1)         x    = a + 2b = 2 + 4 = 6
                2r + 2 = 3r                                                     y    = a + 4b = 2 + 8 = 10
                r = 2                                                               z = a + 5b = 2 + 10 = 12     
           U1  U2  x U3 y z w U4                                         w =a+ 6b = 2 + 12 =14 +
                a    2a      4a          8a                                             x + y + z + w = 42
                b =2a – a
                     2 = a
alat peraga Artikel ARTIKEL ISLAMI ARTIKEL MATEMATIKA ARTIKEL PENDIDIKAN Bahan untuk belajar Bahasa Indonesia 7 bank soal barisan aritmatika Beasiswa berita matematika berita pendidikan Bilangan Biologi 7 bse matematika BTA Matematika UN 2014 Buku SMP Kurikulum 2013 cara menghitung cepat Cerita Cita data ppdb tgl 24 Excel Formula Matematika game matematika Hokkaido Mathematical Journal INFO PPDB 2013 INFORMASI PENDIDIKAN IPS 8 It Slices It Dices jadwal ujian nasional Kelas 7 Kelas 8 Kisi-kisi UAS 2012 Kisi-kisi UAS Ganjil 2012 Kisi-kisi UKK 2013 KUIS MATH 9 Kumpulan soal-soal Matematika kelas IX Kunci Jawaban KUNCI JAWABAN DAN SEBARAN TUKPD I 2013 kurikulum 2013 Latihan Latihan soal UN LATIHAN TO UN 2013 Latihan UAS Kelas 8 latihan UAS kelas IX Latihan UAS Matematika 9 LATIHAN UAS MATH IX logaritma matematika Matematika 7 matematika sd matematika smp materi Bangun ruang sisi lengkung materi matematika Materi Matematika kelas IX-SMP materi matematika smp Menghtiung Modul Matematika MODUL PM UN 2013 PAI 7 Pengumuman UN 2013 Peringkat UN SMAN DKI Jakarta 2013 php PPDB Jakarta 2013 PROGRAM UN 2013 M2C PSB SMA Negeri Unggulan DKI Jakarta rangkuman RPP matematika Rumus rumus matematika sd kelas 3 sd kelas 4 sd kelas 5 sd kelas 6 segitiga pascal Seri Latihan Soal UN 2010 silabus matematika SKL UJIAN NASIONAL Skripsi SMA SMA kelas 10 SMA kelas 12 SMP smp kelas 7 smp kelas 8 smp kelas 9 SMPN 252 SOAL soal dan pembahasan SOAL DAN PEMBAHASAN UN soal matematika soal try out SOAL TRY OUT MATEMATIKA SMP 2011 soal ujian akhir semester soal UN SOAL UN 2012 UNTUK SMP SOAL UN MATEMATIKA 2011 SOFTWARE statistika matematika teka teki matematika teknik Teori The Asian Journal of Mathematics The Sea of Mathematics tips belajar matematika TOKOH trigonometri Try Out UN 2011 tutorial Ujian Ujicoba UN 2010 UN 2010 UN 2011 Utak - atik Video
Powered by Blogger.