• home
Home » , , , » Kuartil dalam Statistik SMP Kelas 9

Kuartil dalam Statistik SMP Kelas 9

Kita bedakan cara pencarian Kuartil dalam tiga cara menurut penyajian datanya sebagai berikut :

  • Jika data disajikan dalam bentuk Data Tunggal Tak Berfrekuensi
Contoh 1 : Tentukan  dari  4, 7, 5, 6, 7, 8, 5, 9, 10
Jawab : Kita urutkan dahulu datanya menjadi :
4, 5, 5, 6, 7, 7, 8, 9, 10 lalu kita kelompokkan menjadi dua bagian
seperti berikut  , kita lihat
yang di tengah-tengah adalah 7, maka itulah Kuartil keduanya, atau
Kemudian kelompok kiri dan kanan kita lihat berikut menentukan kuartil 1 dan kuartil 3 :
Contoh 2 : Tentukan  dari  3, 4, 4, 6, 5, 6, 7, 8, 5, 8, 9, 10
Jawab : Kita urutkan dahulu datanya menjadi :
3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10 lalu kita kelompokkan menjadi empat bagian sebagai berikut :
  • Jika data disajikan dalam bentuk Data Tunggal Berfrekuensi
Contoh 1 : Tentukan  dari tabel berikut :
Tabel 1
Nilaif
41
52
64
73
82

Jawab : Tentukan terlebih dahulu frekuensi kumulatif sebagai berikut
Tabel 2
Nilaif∑f
411
521+2=3
643+4=7
737+3=10
8210+2=12

Jadi jumlah frekuensi (atau jumlah data) ada n=12,
 ditentukan dahulu karena menentukan yang tengah-tengah paling mudah, dan tengah-tengah dari 12 data terletak antara data ke-6 dan ke-7 seperti nampak pada visualisasi berikut :
Dengan melihat tabel 2, kita tahu bahwa data ke-6 adalah 6 dan data ke-7 juga 6, sehingga
.
Secara umum, mencari nilai Q1, Q2, dan Q3 adalah dengan cara memandang jumlah data secara kontinu atau dipandang seperti sebuah garis lurus, misalnya sebagai berikut untuk contoh diatas :

  • Jika data disajikan dalam bentuk Data Berkelompok 
Data berkelompok adalah penyajian data dalam tampilan interval-interval (kelas).
Contoh :
Interval f∑f
5 – 822
9 – 1246
13 – 16511
17 – 20314

Dari tabel di atas, kita peroleh :
Banyak interval ada 4, yaitu 5 – 8, 9 – 12, 13 – 16, 17 – 20 ;
Panjang masing-masing kelas (interval), c = (8 – 5) + 1 = 4 ;
Banyak data, n=∑f=14 ;
Tepi bawah masing-masing interval didefinisikan dengan batas bawah dikurangi 0,5, dan tepi atas didefinisikan dengan batas atas ditambah 0,5. Tepi bawah masing-masing interval adalah : 4,5 ; 8,5 ; 12,5 ; 16,5 . Tepi atas masing-masing interval adalah : 8,5 ; 12,5 ; 16,5 ; 20,5.
Karena median (Q2) terletak di tengah-tengah, maka merupakan data ke-n/2=data ke-14/2=7. Dengan melihat tabel, data ke-7 terletak pada interval ketiga, yang tepi bawahnya, B=12,5.
Kuartil kedua (Q2) dinyatakan dengan formulasi :
Dengan  adalah frekuensi kumulatif sebelum kelas yang memuat Q2 (dalam contoh ini kelas median adalah kelas ketiga), jadi  = 6 ;
dan f adalah frekuensi kelas median, yaitu f = 5.
Sehingga dapat kita hitung :
alat peraga Artikel ARTIKEL ISLAMI ARTIKEL MATEMATIKA ARTIKEL PENDIDIKAN Bahan untuk belajar Bahasa Indonesia 7 bank soal barisan aritmatika Beasiswa berita matematika berita pendidikan Bilangan Biologi 7 bse matematika BTA Matematika UN 2014 Buku SMP Kurikulum 2013 cara menghitung cepat Cerita Cita data ppdb tgl 24 Excel Formula Matematika game matematika Hokkaido Mathematical Journal INFO PPDB 2013 INFORMASI PENDIDIKAN IPS 8 It Slices It Dices jadwal ujian nasional Kelas 7 Kelas 8 Kisi-kisi UAS 2012 Kisi-kisi UAS Ganjil 2012 Kisi-kisi UKK 2013 KUIS MATH 9 Kumpulan soal-soal Matematika kelas IX Kunci Jawaban KUNCI JAWABAN DAN SEBARAN TUKPD I 2013 kurikulum 2013 Latihan Latihan soal UN LATIHAN TO UN 2013 Latihan UAS Kelas 8 latihan UAS kelas IX Latihan UAS Matematika 9 LATIHAN UAS MATH IX logaritma matematika Matematika 7 matematika sd matematika smp materi Bangun ruang sisi lengkung materi matematika Materi Matematika kelas IX-SMP materi matematika smp Menghtiung Modul Matematika MODUL PM UN 2013 PAI 7 Pengumuman UN 2013 Peringkat UN SMAN DKI Jakarta 2013 php PPDB Jakarta 2013 PROGRAM UN 2013 M2C PSB SMA Negeri Unggulan DKI Jakarta rangkuman RPP matematika Rumus rumus matematika sd kelas 3 sd kelas 4 sd kelas 5 sd kelas 6 segitiga pascal Seri Latihan Soal UN 2010 silabus matematika SKL UJIAN NASIONAL Skripsi SMA SMA kelas 10 SMA kelas 12 SMP smp kelas 7 smp kelas 8 smp kelas 9 SMPN 252 SOAL soal dan pembahasan SOAL DAN PEMBAHASAN UN soal matematika soal try out SOAL TRY OUT MATEMATIKA SMP 2011 soal ujian akhir semester soal UN SOAL UN 2012 UNTUK SMP SOAL UN MATEMATIKA 2011 SOFTWARE statistika matematika teka teki matematika teknik Teori The Asian Journal of Mathematics The Sea of Mathematics tips belajar matematika TOKOH trigonometri Try Out UN 2011 tutorial Ujian Ujicoba UN 2010 UN 2010 UN 2011 Utak - atik Video
Powered by Blogger.