Perhatikan gambar segitiga pascal berikut.
Untuk menemukan sebuah pola tersebut kita membutuhkan pola bilangan dalam tiap baris segitiga Pascal. Semua bilangan dalam tiap-tiap baris tersebut merupakan koefisien dari ekspansi pangkat binomial. perhatikan contoh :
Lihat pada gambar segitiga pascal diatas perhatikan pada i=4 Koefisien ekspansi pangkat 4 binomialnya adalah 1, 4, 6, 4, dan 1 yang merupakan bilangan-bilangan pada baris ke-4 pada segitiga Pascal. Menurut Teorema Binomial,
Dari uraian diatas secara umum dapat kita simpulkan bahwa barisan bilangan pada baris i = k dalam segitiga Pascal dapat dituliskan sebagai berikut :
Sebagai contohnya, bilangan ke-3 dan ke-2 dari baris ke-5 pada segitiga Pascal adalah,
Berdasarkan pola tersebut kita dapat menentukan sebuah rumus untuk menentukan bilangan ai,j,yaitu bilangan yang terdapat pada kolom ke-j dan baris ke-i dalam segitiga pascal.
misalnya kita akan menentukan pada baris ke-7 dan kolom ke-6 maka akan menjadi seperti berikut:
Dari rumus ai,j diatas, kita dapat menuliskan sebuah barisan bilangan pada diagonal ke-d seperti berikut.
Sehingga didapat suku ke-n dari baris bilangan pada diagonal ke-d adalah
Sebagai contohnya, diagonal ke-3 pada segitiga Pascal yang merupakan bilangan-bilangan segitiga yang berpola n(n + 1)/2. Pada barisan ini akan kita uji menggunakan rumus yang baru saja diketemukan. Dengan d = 3,
Demikian uraian mengenai segitiga pascal yang bisa admin share semoga dengan sedikit materi matematika tersebet sedikit banyak dapat bermanfaat pada kita semua. selamat memahami apa itu segitiga pascal segitiga pascal