• home
Home » , , » Theorema Phytagoras Matematika

Theorema Phytagoras Matematika

A.      Teorema Pythagoras
  Pythagoras menyatakan bahwa : “Untuk setiap segitiga siku-siku berlaku kuadrat panjang sisi miring (Hipotenusa) sama dengan jumlah kuadrat panjang sisi siku-sikunya.”
     jika c adalah panjang sisi miring/hipotenusa segitiga, a dan b adalah panjang sisi siku-siku. Berdasarkan teorema Pythagoras di atas maka diperoleh hubungan:
c2 = a2 + b2
Dalil pythagoras di atas dapat diturunkan menjadi:
a2 = c2 – b2
b2 = c2 – a2
Catatan : Dalam menentukan persamaan Pythagoras yang perlu diperhatikan adalah siapa yang berkedudukan sebagai hipotenusa/sisi miring.
Contoh :
Tentukan rumus pythagoras dan turunan dari segitiga yang memiliki panjang sisi miring a dan sisi siku-sikunya b dan c.
Rumus Pythagoras      : a2 = b2 + c2
Turunannya                   : b2 = a2 – c2
                                               c2 = a2 – b2
B.       Menghitung Panjang sisi segitiga siku-siku
Contoh :
1. Pada suatu segitiga ABC siku-siku di titik A. panjang AB= 4 cm dan AC= 3 cm.  Hitunglah panjang BC!
Jawab:
BC2 = AC2 + AB2
BC2 = 32 + 42
BC2 = 9 + 16
BC2 = 25
BC  = 5 cm
2. Panjang sisi siku-siku dalam segitiga siku-siku adalah 4x cm dan 3x cm. Jika panjang sisi hipotenusanya 20 cm. Tentukan nilai x.
AC2 = AB2 + BC2
202  = (4x)2 + (3x)2
400  = 16x2 + 9x2\
400  = 25x2
16    = x2
= x
3. Sebuah kapal berlayar ke arah Barat sejauh 80 km, kemudian ke arah utara sejauh 60 km. Hitunglah jarak kapal sekarang dari jarak semula.
jawab:
OU2 = OB2 + UB2
OU2 = 802 + 602
OU2 = 6.400 + 3.600
OU2 = 10.000
OU  = 100 km

C.      Menentukan Jenis Segitiga jika Diketahui Panjang Sisinya dan Triple Pythagoras
1. Kebalikan Dalil Pythagoras
Dalil pythagoras menyatakan bahwa dalam segitiga ABC, jika sudut A siku-siku maka berlaku a2= b2 + c2.
Dalam    ABC, apabila a adalah sisi dihadapan sudut A, b adalah sisi dihadapan sudut B, c adalah sisi sihadapan sudut C, maka berlaku kebalikan Teorama Pythagoras, yaitu:
Jika a2 = b2 + c2 maka     ABC siku-siku di A.
Jika b2 = a2 +c2 maka    ABC siku-siku di B.
Jika c2 = a2 + b2 maka    ABC siku-siku di C.
Dengan menggunakan prinsip kebalikan dalil Pythagoras, kita dapat menentukan apakah suatu segitiga merupakan segitiga lancip atau tumpul.
Jika a2 = b2 + c2 maka     ABC adalah segitiga siku-siku.
Jika a2 > b2 + c2 maka     ABC adalah segitiga tumpul.
Jika a2 < b2 + c2 maka     ABC adalah segitiga lancip.


Contoh :
Tentukan jenis segitiga yang memiliki panjang sisi


1. 5 cm, 7 cm dan 8 cm.
Jawab: sisi terpanjang adalah 8 cm, maka a= 8 cm, b = 7cm dan c = 5 cm
a2 = 82 = 64
b2 + c2 = 72 + 52
b2 + c2 = 49 + 25
b2 + c2 = 74
karena a2 < b2 + c2, maka segitiga tersebut adalah segitiga lanci


2. 8cm, 7cm dan 12 cm
Jawab: sisi terpanjang adalah 12 cm, maka a= 12 cm, b = 7cm dan c = 8 cm
a2 = 122 = 144
b2 + c2 = 72 + 82
b2 + c2 = 49 + 64
b2 + c2 = 113
karena a2 > b2 + c2, maka segitiga tersebut adalah segitiga tumpul


2. Triple Pythagoras
Yaitu pasangan tiga bilangan bulat positif yang memenuhi kesamaan “kuadrat bilangan terbesar sama dengan jumlah kuadrat kedua bilangan yang lain.”
Contoh :
3, 4 dan 5 adalah triple Pythagoras sebab, 52 = 42 + 32
alat peraga Artikel ARTIKEL ISLAMI ARTIKEL MATEMATIKA ARTIKEL PENDIDIKAN Bahan untuk belajar Bahasa Indonesia 7 bank soal barisan aritmatika Beasiswa berita matematika berita pendidikan Bilangan Biologi 7 bse matematika BTA Matematika UN 2014 Buku SMP Kurikulum 2013 cara menghitung cepat Cerita Cita data ppdb tgl 24 Excel Formula Matematika game matematika Hokkaido Mathematical Journal INFO PPDB 2013 INFORMASI PENDIDIKAN IPS 8 It Slices It Dices jadwal ujian nasional Kelas 7 Kelas 8 Kisi-kisi UAS 2012 Kisi-kisi UAS Ganjil 2012 Kisi-kisi UKK 2013 KUIS MATH 9 Kumpulan soal-soal Matematika kelas IX Kunci Jawaban KUNCI JAWABAN DAN SEBARAN TUKPD I 2013 kurikulum 2013 Latihan Latihan soal UN LATIHAN TO UN 2013 Latihan UAS Kelas 8 latihan UAS kelas IX Latihan UAS Matematika 9 LATIHAN UAS MATH IX logaritma matematika Matematika 7 matematika sd matematika smp materi Bangun ruang sisi lengkung materi matematika Materi Matematika kelas IX-SMP materi matematika smp Menghtiung Modul Matematika MODUL PM UN 2013 PAI 7 Pengumuman UN 2013 Peringkat UN SMAN DKI Jakarta 2013 php PPDB Jakarta 2013 PROGRAM UN 2013 M2C PSB SMA Negeri Unggulan DKI Jakarta rangkuman RPP matematika Rumus rumus matematika sd kelas 3 sd kelas 4 sd kelas 5 sd kelas 6 segitiga pascal Seri Latihan Soal UN 2010 silabus matematika SKL UJIAN NASIONAL Skripsi SMA SMA kelas 10 SMA kelas 12 SMP smp kelas 7 smp kelas 8 smp kelas 9 SMPN 252 SOAL soal dan pembahasan SOAL DAN PEMBAHASAN UN soal matematika soal try out SOAL TRY OUT MATEMATIKA SMP 2011 soal ujian akhir semester soal UN SOAL UN 2012 UNTUK SMP SOAL UN MATEMATIKA 2011 SOFTWARE statistika matematika teka teki matematika teknik Teori The Asian Journal of Mathematics The Sea of Mathematics tips belajar matematika TOKOH trigonometri Try Out UN 2011 tutorial Ujian Ujicoba UN 2010 UN 2010 UN 2011 Utak - atik Video
Powered by Blogger.