• home
Home » , » Pengurangan Bilangan Bulat - VII SMP/MTs

Pengurangan Bilangan Bulat - VII SMP/MTs

pengurangan pada bilangan bulat juga bisa menggunakan alat bantu berupa garis bilangan. Oke sekarang silahkan simak penjelasaannya di bawah ini.
Kita ketahui bahwa pengurangan dinyatakan sebagai penjumlahan dengan lawan bilangan pengurang. Konsep ini sudah Anda pelajari pada waktu Anda duduk di bangku sekolah dasar. Coba ingat-ingat kembali konsep tersebut.
Oke untuk mengingat kembali konsep tersebut, silahkan bandingkan hasil penjumlahan 4 + (–3) dan pengurangan 4 – 3. Dengan menggunakan bantuan garis bilangan maka untuk menjumlahkan 4 + (–3) dapat dilakukan dengan langkah-langkahnya berikut ini.
=> Gambarlah anak panah dari angka 0 sejauh 4 satuan ke kanan sampai pada angka 4.
=> Gambarlah anak panah tadi dari angka 4 sejauh 3 satuan ke kiri sampai angka 1.
=> Jadi, hasilnya dari 4 + (–3) = 1 dan garis bilangannya akan tampak seperti gambar di bawah ini.

Sedangkan untuk pengurangan 4 – 3 sama seperti langkah-langkahnya di atas yakni.
=> Gambarlah anak panah dari angka 0 sejauh 4 satuan ke kanan sampai pada angka 4.
=> Gambarlah anak panah tadi dari angka 4 sejauh 3 satuan ke kiri sampai angka 1.
=> Jadi, hasilnya dari 4 + (–3) = 1 dan garis bilangannya akan tampak seperti gambar di bawah ini.
Sekarang kita bandingkan hasil penjumlahan –5 + 2 dengan pengurangan –5 – (–2). Dengan cara yang sama seperti cara di atas maka hasil penjumlahan –5 + 2 maka garis bilangannya akan tampak seperti gambar di bawah ini.

Sedangkan hasil pengurangan –5 – (–2), gambar garis bilangannya akan tampak seperti gambar di bawah ini.
Setelah melihat kedua hasil pengurangan dan penjumlahan di atas dengan bantuan garis bilangan maka diperoleh bahwa:
=> 4 – 3 = 4 + (–3) = 1
=> –5 – (–2) = –5 + 2 = –3
Jadi, berdasarkan pemaparan di atas, maka dapat disimpulkan bahwa pada pengurangan bilangan bulat, mengurangi dengan suatu bilangan sama artinya dengan menambah dengan lawan pengurangnya. Secara umum pernyataan tersebut dapat dituliskan bahwa “untuk setiap bilangan bulat a dan b, maka berlaku a – b = a + (–b)”.
alat peraga Artikel ARTIKEL ISLAMI ARTIKEL MATEMATIKA ARTIKEL PENDIDIKAN Bahan untuk belajar Bahasa Indonesia 7 bank soal barisan aritmatika Beasiswa berita matematika berita pendidikan Bilangan Biologi 7 bse matematika BTA Matematika UN 2014 Buku SMP Kurikulum 2013 cara menghitung cepat Cerita Cita data ppdb tgl 24 Excel Formula Matematika game matematika Hokkaido Mathematical Journal INFO PPDB 2013 INFORMASI PENDIDIKAN IPS 8 It Slices It Dices jadwal ujian nasional Kelas 7 Kelas 8 Kisi-kisi UAS 2012 Kisi-kisi UAS Ganjil 2012 Kisi-kisi UKK 2013 KUIS MATH 9 Kumpulan soal-soal Matematika kelas IX Kunci Jawaban KUNCI JAWABAN DAN SEBARAN TUKPD I 2013 kurikulum 2013 Latihan Latihan soal UN LATIHAN TO UN 2013 Latihan UAS Kelas 8 latihan UAS kelas IX Latihan UAS Matematika 9 LATIHAN UAS MATH IX logaritma matematika Matematika 7 matematika sd matematika smp materi Bangun ruang sisi lengkung materi matematika Materi Matematika kelas IX-SMP materi matematika smp Menghtiung Modul Matematika MODUL PM UN 2013 PAI 7 Pengumuman UN 2013 Peringkat UN SMAN DKI Jakarta 2013 php PPDB Jakarta 2013 PROGRAM UN 2013 M2C PSB SMA Negeri Unggulan DKI Jakarta rangkuman RPP matematika Rumus rumus matematika sd kelas 3 sd kelas 4 sd kelas 5 sd kelas 6 segitiga pascal Seri Latihan Soal UN 2010 silabus matematika SKL UJIAN NASIONAL Skripsi SMA SMA kelas 10 SMA kelas 12 SMP smp kelas 7 smp kelas 8 smp kelas 9 SMPN 252 SOAL soal dan pembahasan SOAL DAN PEMBAHASAN UN soal matematika soal try out SOAL TRY OUT MATEMATIKA SMP 2011 soal ujian akhir semester soal UN SOAL UN 2012 UNTUK SMP SOAL UN MATEMATIKA 2011 SOFTWARE statistika matematika teka teki matematika teknik Teori The Asian Journal of Mathematics The Sea of Mathematics tips belajar matematika TOKOH trigonometri Try Out UN 2011 tutorial Ujian Ujicoba UN 2010 UN 2010 UN 2011 Utak - atik Video
Powered by Blogger.