• home
Home » » Persamaan Linier

Persamaan Linier

Persamaan linear adalah sebuah persamaan aljabar, yang tiap sukunya mengandung konstanta, atau perkalian konstanta dengan variabel tunggal. Persamaan ini dikatakan linear sebab hubungan matematis ini dapat digambarkan sebagai garis lurus dalam Sistem koordinat Kartesius.

Contoh grafik dari suatu persamaan linear dengan nilai m=0,5 dan b=2 (garis merah)
Bentuk umum untuk persamaan linear adalah
y = mx + b.\,
Dalam hal ini, konstanta m akan menggambarkan gradien garis, dan konstanta b merupakan titik potong garis dengan sumbu-y. Persamaan lain, seperti x3, y1/2, dan xy bukanlah persamaan linear.

Contoh

Contoh sistem persamaan linear dua variabel:
x + 2y = 10,\,,
3b + 5c = 4d+ 20,\,,
5x - 3y +6 = -9x + 8y+ 4,\,

Bentuk Umum

Ax + By + C = 0,\,
dimana konstanta A dan B bila dijumlahkan, hasilnya bukan angka nol. Konstanta dituliskan sebagai A ≥ 0, seperti yang telah disepakati ahli matematika bahwa konstanta tidak boleh sama dengan nol. Grafik persamaan ini bila digambarkan, akan menghasilkan sebuah garis lurus dan setiap garis dituliskan dalam sebuah persamaan seperti yang tertera diatas. Bila A ≥ 0, dan x sebagai titik potong, maka titik koordinat-xadalah ketika garis bersilangan dengan sumbu-x (y = 0) yang digambarkan dengan rumus -c/a. Bila B≥ 0, dan y sebagai titik potong, maka titik koordinat- y adalah ketika garis bersilangan dengan sumbu-y (x = 0), yang digambarkan dengan rumus -c/b.

Bentuk standar

Ax + By = C,\,
dimana, A dan B jika dijumlahkan, tidak menghasilkan angka nol dan A bukanlah angka negatif. Bentuk standar ini dapat dirubah ke bentuk umum, tapi tidak bisa diubah ke semua bentuk, apabila A dan B adalah nol.

Bentuk titik potong gradien

Sumbu-y

y = mx + b,\,
dimana m merupaka gradien dari garis persamaan, dan titik koordinat y adalah persilangan dari sumbu-y. Ini dapat digambarkan dengan x = 0, yang memberikan nilai y = b. Persamaan ini digunakan untuk mencari sumbu-y, dimana telah diketahui nilai dari x. Y dalam rumus tersebut merupakan koordinat y yang anda taruh di grafik. Sedangkan X merupakan koordinat x yang anda taruh di grafik.

Sumbu-x

x = \frac{y}{m} + c,\,
dimana m merupakan gradien dari garis persamaan, dan c adalah titik potong-x, dan titik koordinat x adalah persilangan dari sumbu-x. Ini dapat digambarkan dengan y = 0, yang memberikan nilai x = c. Bentuk y/m dalam persamaan sendiri berarti bahwa membalikkan gradien dan mengalikannya dengan y. Persamaan ini tidak mencari titik koordinat x, dimana nilai y sudah diberikan.

Sistem persamaan linear lebih dari dua variabel

Sebuah persamaan linear bisa lebih dari dua variabel, seperti berikut ini:
a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b.
dimana dalam bentuk ini, digambarkan bahwa a1 adalah koefisien, x dan n merupakan variabel dan b adalah konstanta.
SISTEM PERSAMAAN LINEAR DUA VARIABEL
A. Pengertian persamaan linear dua variabel (PLDV)
Persamaan linear dua variabel ialah persamaan yang mengandung dua variabel dimana pangkat/derajat tiap-tiap variabelnya sama dengan satu.
Bentuk Umum PLDV :       ax + by = c       x dan y disebut variabel
B. Sistem persamaan linear dua variable (SPLDV)
Sistem persamaan linear dua variable adalah dua persamaan linear dua variable yang      mempunyai hubungan diantara keduanya dan mempunyai satu penyelesaian.
Bentuk umum SPLDV :
ax + by = c      px + qy = r     dengan  x , y disebut variabel                a, b, p, q disebut keifisien                c , r disebut konstanta   C.
Penyelesaian sistem persamaan linear dua variable (SPLDV)
Cara penyelesaian SPLDV dapat dilakukan dengan dua cara yaitu :
1. Metode Substitusi
Menggantikan satu variable dengan variable dari persamaan yang lain
contoh :  Carilah penyelesaian sistem persamaan  x + 2y = 8 dan  2x – y = 6
jawab :  Kita ambil persamaan pertama yang akan disubstitusikan yaitu   x + 2y = 8
Kemudian persamaan tersebut kita ubah menjadi  x = 8 – 2y,
Kemudian persamaan yang diubah  tersebut disubstitusikan ke persamaan
2x – y = 6  menjadi :             2 (8 – 2y) – y = 6  ; (x persamaan kedua menjadi  x = 8 – 2y)
16 – 4y – y = 6
16 – 5y = 6
-5y = 6 – 16
-5y = -10
5y = 10
y =  2
masukkan nilai y=2 ke dalam salah satu persamaan :
x + 2y = 8
x + 2. 2. = 8
x + 4  = 8
x = 8 – 4
x = 4
Jadi  penyelesaian sistem persamaan tersebut adalah x = 4 dan  y = 2.
Himpunan penyelesaiannya : HP = {4, 2}
2. Metode Eliminasi
Dengan cara menghilangkan salaj satu variable x atau y.
contoh :
Selesaikan soal di atas dengan cara eliminasi:
Jawab  ;
x + 2y = 8
2x – y = 6
(i) mengeliminasi variable x
x + 2y = 8  | x 2 | –> 2x + 4y = 16
2x – y = 6   | x 1 | –> 2x -    y = 6              -   ………*
5y  = 10
y = 2
masukkan nilai y = 2  ke dalam suatu persamaan
x  + 2 y = 8
x  + 2. 2 = 8
x + 4 = 8
x = 8 – 4
x = 4
HP = {4, 2}
(ii) mengeliminasi variable y
x + 2y = 8  | x 1 | –> x + 2y =   8
2x – y = 6   | x 2 | –> 4x – 2y = 12              +     ……*
5x  = 20
x  = 4
masukkan nilai x = 4  ke dalam suatu persamaan
x  + 2 y = 8
4  + 2y = 8
2y = 8 – 4
2y = 4
y = 2
4  = 2
HP =  {4, 2}
* catatan    nilai + atau – digunakan untuk menghilangkan/eliminasi  salah satu variable agar menjadi 0
Contoh (i) yang dieliminasi adalah x :
x dalam persamaan satu + dan persamaan dua + digunakan tanda -
(ii) yang dieliminasi adalah y :
y dalam persamaan satu +, persamaan dua -  atau sebaliknya digunakan tanda +


C. Penggunaan sistem persamaan linear dua variable
Contoh:       Harga 2 buah mangga dan 3 buah jeruk adalah Rp. 6000, kemudian apabila membeli 5 buah mangga dan  4 buah jeruk adalah Rp11.500,-
Berapa jumlah uang yang harus dibayar apabila kita akan membeli  4 buah mangga dan 5 . buah jeruk ?
Jawab :
Dalam menyelesaikan persoalan cerita seperti di atas diperlukan penggunaan model       matematika.
Misal:  harga 1 buah mangga adalah x dan harga 1 buah jeruk adalah y
Maka model matematika soal tersebut di atas adalah :
2x + 3 y = 6000
5x + 4 y = 11500
Ditanya  4 x + 5 y =  ?
Kita eliminasi variable x :
2x + 3 y = 6000     | x 5 |  = 10x + 15 y = 30.000
5x + 4 y = 11500   | x 2 |  = 10x +   8 y = 23.000    -    ( karena x persamaan 1 dan 2 +)
7y  = 7000
y  = 1000
masukkan ke dalam suatu persamaan :
2x + 3 y = 6000
2x + 3 . 1000 = 6000
2x + 3000 = 6000
2x   = 6000 – 3000
2x = 3000
x = 1500
didapatkan x = 1500 (harga sebuah mangga) dan y = 1000 (harga sebuah jeruk)
sehingga uang yang harus dibayar untuk membeli 4 buah mangga dan 5 buah jeruk
adalah  4 x + 5 y = 4. 1500 + 5. 1000
= 6000 + 5000 = Rp. 11.000,-

D. Penyelesaian sistem persamaan linear dua variable dengan menggunakan grafik garis  lurus.

Penyelesaiannya didapatkan dengan menggunakan titik potong antara dua garis lurus tersebut pada grafik garis lurus.
Contoh : kita ambil contoh soal di atas
Tentukan penyelesaian dari x + 2y = 8 dan  2x – y = 6
Langkah-langkah penyelesaiannya :
1. Menentukan titik-titik potong pada sumbu x dan sumbu y dari  kedua persamaan
Persamaan (1)
x + 2y = 8
titik potong dengan sumbu x  apabila y = 0
x + 2y = 8
x + 2.0 = 8
x = 8
titik potong dengan sumbu y  apabila x = 0
x + 2y = 8
0 + 2.y = 8
2y = 8
y   = 4
Persamaan (2)
2x  – y = 6
titik potong dengan sumbu x  apabila y = 0
2x -  y = 6
2x – .0 = 6
2x = 6
x =  3
titik potong dengan sumbu y  apabila x = 0
2x -  y = 6
0  -  .y = 6
-y  = 6
y =  -6
alat peraga Artikel ARTIKEL ISLAMI ARTIKEL MATEMATIKA ARTIKEL PENDIDIKAN Bahan untuk belajar Bahasa Indonesia 7 bank soal barisan aritmatika Beasiswa berita matematika berita pendidikan Bilangan Biologi 7 bse matematika BTA Matematika UN 2014 Buku SMP Kurikulum 2013 cara menghitung cepat Cerita Cita data ppdb tgl 24 Excel Formula Matematika game matematika Hokkaido Mathematical Journal INFO PPDB 2013 INFORMASI PENDIDIKAN IPS 8 It Slices It Dices jadwal ujian nasional Kelas 7 Kelas 8 Kisi-kisi UAS 2012 Kisi-kisi UAS Ganjil 2012 Kisi-kisi UKK 2013 KUIS MATH 9 Kumpulan soal-soal Matematika kelas IX Kunci Jawaban KUNCI JAWABAN DAN SEBARAN TUKPD I 2013 kurikulum 2013 Latihan Latihan soal UN LATIHAN TO UN 2013 Latihan UAS Kelas 8 latihan UAS kelas IX Latihan UAS Matematika 9 LATIHAN UAS MATH IX logaritma matematika Matematika 7 matematika sd matematika smp materi Bangun ruang sisi lengkung materi matematika Materi Matematika kelas IX-SMP materi matematika smp Menghtiung Modul Matematika MODUL PM UN 2013 PAI 7 Pengumuman UN 2013 Peringkat UN SMAN DKI Jakarta 2013 php PPDB Jakarta 2013 PROGRAM UN 2013 M2C PSB SMA Negeri Unggulan DKI Jakarta rangkuman RPP matematika Rumus rumus matematika sd kelas 3 sd kelas 4 sd kelas 5 sd kelas 6 segitiga pascal Seri Latihan Soal UN 2010 silabus matematika SKL UJIAN NASIONAL Skripsi SMA SMA kelas 10 SMA kelas 12 SMP smp kelas 7 smp kelas 8 smp kelas 9 SMPN 252 SOAL soal dan pembahasan SOAL DAN PEMBAHASAN UN soal matematika soal try out SOAL TRY OUT MATEMATIKA SMP 2011 soal ujian akhir semester soal UN SOAL UN 2012 UNTUK SMP SOAL UN MATEMATIKA 2011 SOFTWARE statistika matematika teka teki matematika teknik Teori The Asian Journal of Mathematics The Sea of Mathematics tips belajar matematika TOKOH trigonometri Try Out UN 2011 tutorial Ujian Ujicoba UN 2010 UN 2010 UN 2011 Utak - atik Video
Powered by Blogger.